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Abstract—Solar resource is important for predicting PV system
performance. Historical Typical Meteorological Years (TMY)
from 1960-1990 (TMY2) and 1990-2010 (TMY3) are commonly
used in the United States, but recently there have been concerns
by stakeholders whether these datasets may lead to overpre-
dictions. Therefore we simulated performance of a fictional PV
system with over 20-years of accurate ground based surface
radiation (SURFRAD) measurements at 7 locations and com-
pared the median year performance with simulations using TMY
data. We found that TMY overpredicted the median SURFRAD
performance at 5 of the 7 sites, the NREL Physical Solar Model
V3 (PSM3) performance predictions were greater than 90% of
SURFRAD years at 5 of the 7 sites, and TMY3 predictions were
closest on average to the median. Both TMY2 and TMY3 were
within their uncertainty range.

Index Terms—SURFRAD, TMY, irradiance, PV, performance,
prediction

I. INTRODUCTION

Investors require accurate predictions of PV system per-
formance to quantify and manage their risks. However, there
is growing concern about under-performing PV systems [1].
Predictions commonly use TMY datasets developed from
historical data. There are many sources of TMY datasets,
but we focused on three publicly available TMY datasets
from the National Renewable Energy Laboratory (NREL), and
compared them with accurate, ground-based, high-frequency
SURFRAD data at 7 sites from 1995 until present day [2] by
simulating a fictional PV system. Our goal was to determine
if the predictions with TMY data would yield the same
median performance we simulated with the SURFRAD data,
but we discovered the TMY overpredicted performance for all
sites except Penn State, PA, and Goodwin Creek, MS. The
predictions with PSM3 were greater than 90% of SURFRAD
years at all sites except Boulder, CO and Fort Peck, MT. The
predictions with TMY2 were greater than 30-90% of years at 6
sites excluding Desert Rock, NV which doesn’t have a nearby
TMY2 site. On average, predictions with TMY3 were closest
to the SURFRAD median with a standard deviation of 2.8%
of the annual DC capacity factor. In the following sections we
will describe the methods, present our results, and discuss our
conclusions.

II. METHODS

A. Locations

There are 7 SURFRAD stations [2] across the United States
with 1 to 3 minute resolution. Fig. 1 shows the SURFRAD site
locations. We selected TMY2 [3] and TMY3 [4] sites within

120[km] from the SURFRAD site that did not have any signifi-
cant monthly irradiance, temperature, or wind speed deviations
from the other nearby datasets. The generic uncertainty for
both TMY2 and TMY3 is 5-8% at 95% confidence. For each
SURFRAD site the PSM3 was queried for the nearest location
using pvlib python [5]. Table I shows the station names, global
coordinates, and metadata about each site. The error from the
SURFRAD median in the last column will be discussed later
in the results, Section III.

B. Annual Energy Prediction

We used pvlib python [5] to calculate the solar position
for each site and the rotations for a fictitious single-axis
tracker system. We used the SURFRAD measured global
horizontal irradiance (GHI) and decomposed it into direct
normal irradiance (DNI) and diffuse horizontal irradiance [6],
then transposed it to the plane of the array (POA) accounting
for diffuse components, ground reflection, and incidence angle
modifiers [7]. We assume isotropic sky diffuse and an albedo
of 0.25 for ground diffuse. To get the effective irradiance, we
combined the POA components applying the ASHRAE inci-
dence angle modifiers with b0 = 0.05 to the direct irradiance
and neglected spectral mismatch. Because SURFRAD doesn’t
include ambient temperature, we used RdTools [8] to get clear
sky temperatures, and then scaled it to the daily ratio of
SURFRAD GHI to calculated clear sky GHI [9] using (1). We
used the PVsyst model to estimate module cell temperatures
with default coefficients, Uc = 29, Uv = 0, the adjusted air
temperature, and zero wind speed [10]. Finally, we predicted
the DC power for a representative 300[W] mono-crystalline
silicon module (Canadian Solar CS6X-300M) with the CEC
6-parameter model [11]. Then we resampled the data at hourly
frequency and summed each day (2) and year (4). All years
that had less than 350 days were removed and the annual
energy was scaled to a full year accounting for leap years.
We normalized by the module nameplate of 300[W] to get
daily and annual DC capacity factors (CP) using (3) and (5).
Then we repeated the simulations with PSM3 [12], TMY2 [3],
and TMY3 [4], but using the measured ambient temperature
provided in the data set. The full model is available online
(https://github.com/mikofski/PVRW2021).

Tadj = Tclearsky +

(
GHI

GHIclearsky
− 1

)
∆T

∆T = Tmax,daily − Tmin,daily

(1)



Fig. 1. Map of SURFRAD sites and selected nearby TMY2 and TMY3 sites for comparison.

TABLE I
SUMMARY OF SURFRAD, NSRDB, AND TMY LOCATIONS

Station Latitude Longitude Elevation TMY ID Error
Bondville, IL 40.05 -88.37 213 SURFRAD bon

NSRDB 40.05 -88.38 213 PSM3 887015 8.9%
SPRINGFIELD, IL 39.83333333 -89.66666667 187 TMY2 93822 4.9%

SPRINGFIELD CAPITAL AP 39.85 -89.683 179 TMY3 724390 2.9%
Boulder, CO 40.13 -105.24 1689 SURFRAD tbl

NSRDB 40.13 -105.22 1616 PSM3 150658 1.3%
BOULDER, CO 40.01666667 -105.25 1634 TMY2 94018 1.9%

DENVER INTL AP 39.833 -104.65 1650 TMY3 725650 0.6%
AURORA BUCKLEY FIELD ANGB 39.717 -104.75 1726 TMY3 724695 0.8%

DENVER/CENTENNIAL [GOLDEN - NREL] 39.742 -105.179 1829 TMY3 724666 -1.8%
Desert Rock, NV 36.62 -116.02 1007 SURFRAD dra

NSRDB 36.61 -116.02 991 PSM3 109824 4.0%
MERCURY DESERT ROCK AP [SURFRAD] 36.63 -116.02 935 TMY3 723870 1.0%

Fort Peck, MT 48.31 -105.1 634 SURFRAD fpk
NSRDB 48.33 -105.1 629 PSM3 250489 3.0%

GLASGOW, MT 48.21666667 -106.6166667 700 TMY2 94008 1.6%
GLASGOW INTL ARPT 48.217 -106.617 699 TMY3 727680 2.3%

Goodwin Creek, MS 34.25 -89.87 98 SURFRAD gwn
NSRDB 34.25 -89.86 95 PSM3 852772 13.3%

MEMPHIS, TN 35.05 -89.98333333 87 TMY2 13893 6.5%
GREENWOOD LEFLORE ARPT 33.5 -90.083 47 TMY3 722359 3.9%

GREENVILLE MUNICIPAL 33.483 -90.983 42 TMY3 722356 3.4%
MEMPHIS INTERNATIONAL AP 35.067 -89.983 81 TMY3 723340 2.9%

COLUMBUS AFB 33.65 -88.45 68 TMY3 723306 -1.6%
Penn State, PA 40.72 -77.93 376 SURFRAD psu

NSRDB 40.73 -77.94 378 PSM3 1116869 8.8%
WILLIAMSPORT, PA 41.26666667 -77.05 243 TMY2 14778 -2.5%

DUBOIS FAA AP 41.183 -78.9 553 TMY3 725125 -5.5%
Sioux Falls, SD 43.73 -96.62 473 SURFRAD sxf

NSRDB 43.73 -96.62 479 PSM3 706377 6.1%
SIOUX FALLS, SD 43.56666667 -96.73333333 435 TMY2 14944 1.8%

SIOUX FALLS FOSS FIELD 43.583 -96.75 433 TMY3 726510 0.4%
BROOKINGS (AWOS) 44.3 -96.817 502 TMY3 726515 -3.5%



Edaily =

12AM∑
time=1AM

Ehourly (2)

CPdaily =
Edaily

24[h]Nameplate[W]
(3)

Eannual =

365∑
day=1

Edaily (4)

CP annual =
Eannual

8760[h]Nameplate[W]
(5)

III. RESULTS

A. Analysis
We plotted histograms of the annual predictions using

SURFRAD data for each of the 7 sites in Fig. 2, Fig. 3, Fig. 4,
Fig. 5, Fig. 6, Fig. 7, and Fig. 8. The top plot shows the daily
capacity factors (3) and annual capacity factors overlaid in
red (5), while the bottom plot shows the histogram of annual
energy per module (4) with the median (P50) and 90% chance
of exceedance (P90) marked with dashed blue lines. Then we
overlaid the predicted PSM3, TMY2, and TMY3 predictions
and annotated the plot with their quantiles.

Fig. 2. Daily (blue) and annual (red) capacity factor relative to DC nameplate
for Bondville, IL, SURFRAD site (top) and distribution of annual DC energy
per module (bottom).

Table II shows the relative differences between the TMY an-
nual prediction and the SURFRAD median (6) so that positive
errors mean the TMY overpredicted. Table III summarizes the
results as annual capacity factors (5), and Table IV summarizes
the results as quantiles. Where more than one TMY3 was close
to the SURFRAD station, the closest to the median is shown
in the tables. The relative differences for all sites are shown
in the last column of Table I.

Error =
CPTMY

CPSURFRAD,P50
− 1 (6)

Fig. 3. Daily (blue) and annual (red) capacity factor relative to DC nameplate
for Boulder, CO, SURFRAD site (top) and distribution of annual DC energy
per module (bottom).

Fig. 4. Daily (blue) and annual (red) capacity factor relative to DC nameplate
for Desert Rock, NV, SURFRAD site (top) and distribution of annual DC
energy per module (bottom).

TABLE II
SUMMARY OF DIFFERENCES BETWEEN SURFRAD MEDIAN AND TMY

ANNUAL PREDICTIONS

Station PSM3 TMY2 TMY3
bon 8.9% 4.9% 2.9%
tbl 1.3% 1.9% 0.6%
dra 4.0% 1.0%
fpk 3.0% 1.6% 2.3%
gwn 13.3% 6.5% -1.6%
psu 8.8% -2.5% -5.5%
sxf 6.1% 1.8% 0.4%

AVG 6.5% 2.4% 0.0%
STD 4.2% 3.1% 2.8%



Fig. 5. Daily (blue) and annual (red) capacity factor relative to DC nameplate
for Fort Peck, MT, SURFRAD site (top) and distribution of annual DC energy
per module (bottom).

Fig. 6. Daily (blue) and annual (red) capacity factor relative to DC nameplate
for Goodwin Creek, MS, SURFRAD site (top) and distribution of annual DC
energy per module (bottom).

TABLE III
SUMMARY OF PREDICTED SURFRAD ANNUAL CAPACITY FACTORS

COMPARED WITH TMY

SURFRAD Station P50 P90 PSM3 TMY2 TMY3
Bondville, IL 20.2% 18.7% 21.9% 21.1% 20.7%
Boulder, CO 23.4% 22.9% 23.7% 23.8% 23.5%

Desert Rock,NV 28.6% 27.5% 29.7% 28.8%
Fort Peck, MT 20.3% 19.5% 21.0% 20.7% 20.8%

Goodwin Creek, MS 21.1% 19.7% 23.9% 22.5% 20.8%
Penn State, PA 18.6% 17.2% 20.2% 18.1% 17.5%
Sioux Falls, SD 20.7% 19.6% 22.0% 21.1% 20.8%

Fig. 7. Daily (blue) and annual (red) capacity factor relative to DC nameplate
for Penn State, PA, SURFRAD site (top) and distribution of annual DC energy
per module (bottom).

Fig. 8. Daily (blue) and annual (red) capacity factor relative to DC nameplate
for Sioux Falls, SD, SURFRAD site (top) and distribution of annual DC
energy per module (bottom).

TABLE IV
SUMMARY OF TMY QUANTILES OF SURFRAD YEARS

SURFRAD Station PSM3 WBAN TMY2 USAF TMY3
Bondville, IL 96.2% 93822 88.5% 724390 88.5%
Boulder, CO 56.0% 94018 64.0% 725650 52.0%

Desert Rock, NV 100% 723870 81.8%
Fort Peck, MT 88.0% 94008 76.0% 727680 80.0%

Goodwin Creek, MS 100% 13893 92.3% 723306 46.2%
Penn State, PA 100% 14778 36.4% 725125 13.6%
Sioux Falls, SD 94.1% 14944 70.6% 726510 58.8%



B. Discussion

It’s difficult to spot any trends in the 20 or more years of
data at each of the SURFRAD sites, compared to trends seen
in other studies [13]. Although there are some biases detected
between the SURFRAD data and the oldest data set, TMY2
1960-1990 [3], the average difference from Table II, 2.4%, is
on the same order as the standard deviation between the sites,
3.1%, and is therefore inconclusive. The newer data set, TMY3
1990-2010 [4], seems closer to the SURFRAD data, 0%
average difference, but the standard deviation between sites,
2.8%, is similar to the spread for the TMY2, so they appear to
overlap and are not clearly distinguishable. The newest data
surprisingly is an outlier with an average difference twice as
big as for TMY2, 6.5%, and a spread on the same order as
TMY2 and TMY3, 4.2%, so there’s a clear distinction between
it and the other datasets. More investigation is necessary to
understand the difference.

The distribution of years differs between SURFRAD sites,
perhaps due to climate differences. Bondville, IL, Fig. 2 and
Sioux Falls, SD, Fig. 8 seem to be the most normal and
symmetrical with ranges of about 10%, but not all of the
histograms show a normal distribution, some are flatter, many
skewed, and some possibly multimodal. The range varies from
site to site, between 5-10%. Fort Peck, MT, Fig. 5 has the
closest range between 510-560[kWh/yr] per module. Desert
Rock, NV, Fig. 4 also has a tight range and the highest output
of all the sites, but also has a long downside tail. The year 2002
is an outlier at this site and is about 50[kWh/yr] per module
lower than the other years. Goodwin Creek, MS, Fig 6 also
has a long downside tail and apparently no upside or a double
peak. The years 2004 and 2014 are outliers in this data set
deviating by nearly 20-25% from previous and later years.

These SURFRAD sites do not cover all of the climates and
regions in the US consistently. Most of the sites are in the
interior, and there is a high concentration in the midwest. The
average annual DC capacity factor is about 20% with Desert
Rock, NV, the exception at 28%. There are no SURFRAD
sites in the northwest, along the Pacific Coast, along the Gulf
of Mexico, the Atlantic coast, or in the southeast, and there
is only one site in the southwest, where there may be a high
concentration of PV systems. For example Arizona or New
Mexico. Therefore, the results of this study are limited and
should not be extrapolated or applied uniformly to the entire
United States.

IV. CONCLUSIONS

We studied the question of whether TMY datasets are
representative of the median predicted PV performance by
comparing PV system simulations using TMY data with simu-
lations using over 20 years of high-frequency, accurate, ground
based SURFRAD measurements at 7 sites across the United
States. We found that the TMY datasets all overpredicted
the median SURFRAD annual performance at 5 of 7 sites.
The PSM3 predictions were greater than the median for all
sites, and greater than 90% of years in 5 of 7 sites. TMY2
predictions were greater than 30-90% of years at 6 sites except

Desert Rock, NV which had no nearby TMY2 station. On
average TMY3 predictions were closest to the SURFRAD
median. Differences between the SURFRAD median and both
TMY2 and TMY3 were within their uncertainties. Due to
the lack of number of SURFRAD stations it is difficult to
conclude whether there is a generic high bias for TMY data.
Although there is trend of generic high bias for PSM3 data, it
is important to consider all available datasets and scrutinize
them to determine the viability of long-term representative
datasets. The distribution of differences from the SURFRAD
median for both TMY2 and TMY3 stations were indiscernible;
hence careful analysis is required to determine their utility in
determining a long-term data set.
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